Abstract
This paper is concerned with asymptotic solutions of a nonlinear boundary value problem (BVP), which arises in a study of laminar flow in a uniformly porous channel with retractable walls and an applied transverse magnetic field. For different ranges of the control parameters (i.e. α,Re and M) arising in the BVP, four cases are considered using different singular perturbation methods. For the first case, unlike those in the existing literature, we make use of the Lighthill method and successfully construct an asymptotic solution with high-order derivatives at the center of the channel. For the second case, under large suction we consider M2=O(1) and M2=O(Re), respectively, which will further extend the applying range of asymptotic solutions. In other cases, asymptotic solutions with a boundary layer are successfully constructed. In addition, numerical solutions presented for each case agree well with asymptotic solutions, which illustrates that the asymptotic solutions constructed in this paper are more reliable. Finally, the influences of some parameters on flow field are discussed to develop a better understanding of the flow problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.