Abstract

In this paper, we study the asymptotic expansions for the zero of the pressure function s\mapsto P(s\varphi(\varepsilon,\cdot)+\xi(\varepsilon,\cdot)) for perturbed potentials \varphi(\varepsilon,\cdot) and \xi(\varepsilon,\cdot) defined on the shift space with countable state space. In our main result, we give a sufficient condition for the solution s=s(\varepsilon) of P(s\varphi(\varepsilon,\cdot)+\xi(\varepsilon,\cdot))=0 to have the n -order asymptotic expansion for the small parameter \varepsilon . In addition, we also obtain the case where the order of the expansion of the solution s=s(\varepsilon) is less than the order of the expansion of the perturbed potentials. Our results can be applied to problems concerning asymptotic behaviours of Hausdorff dimensions given by the Bowen formula: conformal graph directed Markov systems and other concrete examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.