Abstract

This paper focuses on obtaining an asymptotic solution for coupled heat and mass transfer problem during the solidification of high water content materials. It is found that a complicated function involved in governing equations can be approached by Taylor polynomials unlimitedly, which leads to the simplification of governing equations. The unknown functions involved in governing equations can then be approximated by Chebyshev polynomials. The coefficients of Chebyshev polynomials are determined and an asymptotic solution is obtained. With the asymptotic solution, the dehydration and freezing fronts of materials are evaluated easily, and are consistent with numerical results obtained by using an explicit finite difference method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.