Abstract

Elastohydrodynamic models, that describe the interaction between a thin sheet and a fluid medium, have been proven successful in explaining the complex behavior of biological systems and artificial materials. Motivated by these applications we study the quasistatic deformation of a thin sheet that is confined between the two sides of a closed chamber. The two parts of the chamber, above and below the sheet, are filled with an ideal gas. We show that the system is governed by two dimensionless parameters, Δ and η, that account respectively for the lateral compression of the sheet and the ratio between the amount of fluid filling each part of the chamber and the bending stiffness of the sheet. When η≪1 the bending energy of the sheet dominates the system, the pressure drop between the two sides of the chamber increases, and the sheet exhibits a symmetric configuration. When η≫1 the energy of the fluid dominates the system, the pressure drop vanishes, and the sheet exhibits an asymmetric configuration. The transition between these two limiting scenarios is governed by a third branch of solutions that is characterized by a rapid decrease of the pressure drop. Notably, across the transition the energetic gap between the symmetric and asymmetric states scales as δE∼Δ^{2}. Therefore, in the limit Δ≪1 small variations in the energy are accompanied by relatively large changes in the elastic shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.