Abstract
This article examines asymptotic singular value distributions in information theory, with particular emphasis on some of the main applications of random matrices to the capacity of communication channels. Results on the spectrum of random matrices have been adopted in information theory. Furthermore, information theorists, motivated by certain channel models, have obtained a number of new results in random matrix theory (RMT). Most of those results are related to the asymptotic distribution of the (square of) the singular values of certain random matrices that model data communication channels. The article first provides an overview of three transforms that are useful in expressing the asymptotic spectrum results — Stieltjes transform, η-transform, and Shannon transform — before discussing the main results on the limit of the empirical distributions of the eigenvalues of various random matrices of interest in information theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.