Abstract

In this paper, we derive asymptotic models for the propagation of two and three-dimensional gravity waves at the free surface and the interface between two layers of immiscible fluids of different densities, over an uneven bottom. We assume the thickness of the upper and lower fluids to be of comparable size, and small compared to the characteristic wavelength of the system (shallow water regimes). Following a method introduced by Bona, Lannes and Saut based on the expansion of the involved Dirichlet-to-Neumann operators, we are able to give a rigorous justification of classical models for weakly and strongly nonlinear waves, as well as interesting new ones. In particular, we derive linearly well-posed systems in the so called Boussinesq/Boussinesq regime. Furthermore, we establish the consistency of the full Euler system with these models, and deduce the convergence of the solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.