Abstract

Summary In an observational study in which each treated subject is matched to several untreated controls by using observed pretreatment covariates, a sensitivity analysis asks how hidden biases due to unobserved covariates might alter the conclusions. The bounds required for a sensitivity analysis are the solution to an optimization problem. In general, this optimization problem is not separable, in the sense that one cannot find the needed optimum by performing a separate optimization in each matched set and combining the results. We show, however, that this optimization problem is asymptotically separable, so that when there are many matched sets a separate optimization may be performed in each matched set and the results combined to yield the correct optimum with negligible error. This is true when the Wilcoxon rank sum test or the Hodges-Lehmann aligned rank test is applied in matching with multiple controls. Numerical calculations show that the asymptotic approximation performs well with as few as 10 matched sets. In the case of the rank sum test, a table is given containing the separable solution. With this table, only simple arithmetic is required to conduct the sensitivity analysis. The method also supplies estimates, such as the Hodges-Lehmann estimate, and confidence intervals associated with rank tests. The method is illustrated in a study of dropping out of US high schools and the effects on cognitive test scores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.