Abstract
We study the asymptotic behavior near finite blow-up time $t = T$ of the solutions to the one-dimensional degenerate quasilinear parabolic equation $$ u_t = (u^\sigma u_x)_x + u^\beta \quad \text{in} \quad \mathbb{R} \times (0,T) ; \quad \sigma>0, \,\, 1<\beta<\sigma+1, $$ with bounded, nonnegative, compactly supported initial data. This parameter range corresponds to global blow-up where $ u(x,t) \to \infty$ as $t \to T^-$ for any $x \in \mathbb{R}$. We prove that the rescaled function $$ f(\xi,t) = (T-t)^{1/(\beta-1)} u(\xi(T-t)^m,t), \quad m = \frac {\beta-(\sigma+1)}{2(\beta-1)} < 0, $$ converges uniformly as $t \to T$ to a unique compactly supported, symmetric self-similar profile $\theta(\xi) \ge 0$ satisfying a nonlinear ordinary differential equation. The proof is based on the intersections comparison (the Sturmian argument) with a two-parametric family of self-similar solutions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.