Abstract

In the present paper, we consider an infinite chain of harmonic oscillators coupled with a Poisson thermostat attached at a point. The kinetic limit for the energy density of the chain, given by the Wigner distribution, satisfies a transport equation outside the thermostat location. A boundary condition emerges at this site, which describes the reflection-transmission-scattering of the wave energy scattered off by the thermostat. Formulas for the respective coefficients are obtained. Unlike the case of the Langevin thermostat studied in Komorowski et al. (Arch. Ration. Mech. Anal. 237, 497–543, 2020), the Poissonian thermostat scattering generates in the limit a continuous cloud of waves of frequencies different from that of the incident wave.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.