Abstract
We analyse the results of direct numerical simulations of rotating convection in spherical shell geometries with stress-free boundary conditions, which develop strong zonal flows. Both the Ekman number and the Rayleigh number are varied. We find that the asymptotic theory for rapidly rotating convection can be used to predict the Ekman number dependence of each term in the governing equations, along with the convective flow speeds and the dominant length scales. Using a balance between the Reynolds stress and the viscous stress, together with the asymptotic scaling for the convective velocity, we derive an asymptotic prediction for the scaling behaviour of the zonal flow with respect to the Ekman number, which is supported by the numerical simulations. We do not find evidence of distinct asymptotic scalings for the buoyancy and viscous forces and, in agreement with previous results from asymptotic plane layer models, we find that the ratio of the viscous force to the buoyancy force increases with Rayleigh number. Thus, viscosity remains non-negligible and we do not observe a trend towards a diffusion-free scaling behaviour within the rapidly rotating regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.