Abstract

Nonperturbative treatments of the UV limit of pure gravity suggest that it admits a stable fixed point with positive Newton's constant and cosmological constant. We prove that this result is stable under the addition of a scalar field with a generic potential and nonminimal couplings to the scalar curvature. There is a fixed point where the mass and all nonminimal scalar interactions vanish while the gravitational couplings have values which are almost identical to the pure gravity case. We discuss the linearized flow around this fixed point and find that the critical surface is four-dimensional. In the presence of other, arbitrary, massless minimally coupled matter fields, the existence of the fixed point, the sign of the cosmological constant and the dimension of the critical surface depend on the type and number of fields. In particular, for some matter content, there exist polynomial asymptotically free scalar potentials, thus providing a solution to the well-known problem of triviality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.