Abstract

We consider a prototypical “stretching plus bending” functional of an elastic shell. The shell is modeled as a d-dimensional Riemannian manifold endowed, in addition to the metric, with a reference second fundamental form. The shell is immersed into a (d+1)-dimensional ambient space, and the elastic energy accounts for deviations of the induced metric and second fundamental forms from their reference values. Under the assumption that the ambient space is of constant sectional curvature, we prove that any sequence of immersions of asymptotically vanishing energy converges to an isometric immersion of the shell into ambient space, having the reference second fundamental form. In particular, if the ambient space is Euclidean space, then the reference metric and second fundamental form satisfy the Gauss-Codazzi-Mainardi compatibility conditions. This theorem can be viewed as a (manifold-valued) co-dimension 1 analog of Reshetnyak's asymptotic rigidity theorem. It also relates to recent results on the continuity of surfaces with respect to their fundamental forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.