Abstract
Consider an aggregate arrival process A N obtained by multiplexing N on-off processes with exponential off periods of rate λ and subexponential on periods τon. As N goes to infinity, with λN → Λ, A N approaches an M/G/∞ type process. Both for finite and infinite N, we obtain the asymptotic characterization of the arrival process activity period. Using these results we investigate a fluid queue with the limiting M/G/∞ arrival process A t ∞ and capacity c. When on periods are regularly varying (with non-integer exponent), we derive a precise asymptotic behavior of the queue length random variable Q t P observed at the beginning of the arrival process activity periods where ρ = 𝔼A t ∞ < c; r (c ≤ r) is the rate at which the fluid is arriving during an on period. The asymptotic (time average) queue distribution lower bound is obtained under more general assumptions regarding on periods than regular variation. In addition, we analyse a queueing system in which one on-off process, whose on period belongs to a subclass of subexponential distributions, is multiplexed with independent exponential processes with aggregate expected rate 𝔼e t . This system is shown to be asymptotically equivalent to the same queueing system with the exponential arrival processes being replaced by their total mean value 𝔼e t .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.