Abstract

AbstractWe study the asymptotic regularity of solutions to Hartree–Fock (HF) equations for Coulomb systems. To deal with singular Coulomb potentials, Fock operators are discussed within the calculus of pseudo‐differential operators on conical manifolds. First, the non‐self‐consistent‐field case is considered, which means that the functions that enter into the nonlinear terms are not the eigenfunctions of the Fock operator itself. We introduce asymptotic regularity conditions on the functions that build up the Fock operator, which guarantee ellipticity for the local part of the Fock operator on the open stretched cone ℝ+ × S2. This proves the existence of a parametrix with a corresponding smoothing remainder from which it follows, via a bootstrap argument, that the eigenfunctions of the Fock operator again satisfy asymptotic regularity conditions. Using a fixed‐point approach based on Cancès and Le Bris analysis of the level‐shifting algorithm, we show via another bootstrap argument that the corresponding self‐consistent‐field solutions to the HF equation have the same type of asymptotic regularity. Copyright © 2008 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.