Abstract

We consider a multiplicatively renormalizable higher-derivative scalar theory which is used as an effective theory for quantum gravity at large distances (infrared phase of quantum gravity). The asymptotic regimes (in particular, the asymptotically free infrared regime) for the coupling constants---specifically the Newtonian and the cosmological constant---are obtained. The running of the Newton and cosmological constants in the infrared asymptotically free regime may be relevant for solving the cosmological constant problem and for estimating the leading-log corrections to the static gravitational potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.