Abstract
I propose a nonparametric iid bootstrap procedure for the empirical likelihood, the exponential tilting, and the exponentially tilted empirical likelihood estimators that achieves asymptotic refinements for t tests and confidence intervals, and Wald tests and confidence regions based on such estimators. Furthermore, the proposed bootstrap is robust to model misspecification, i.e., it achieves asymptotic refinements regardless of whether the assumed moment condition model is correctly specified or not. This result is new, because asymptotic refinements of the bootstrap based on these estimators have not been established in the literature even under correct model specification. Monte Carlo experiments are conducted in dynamic panel data setting to support the theoretical finding. As an application, bootstrap confidence intervals for the returns to schooling of Hellerstein and Imbens (1999) are calculated. The result suggests that the returns to schooling may be higher.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.