Abstract

ABSTRACTThe extremal ratio has been used in several fields, most notably in industrial quality control, life testing, small-area variation analysis, and the classical heterogeneity of variance situation. In many biological, agricultural, military activity problems and in some quality control problems, it is almost impossible to have a fixed sample size, because some observations are always lost for various reasons. Therefore, the sample size itself is considered frequently to be an random variable (rv). Generalized order statistics (GOS) have been introduced as a unifying theme for several models of ascendingly ordered rvs. The concept of dual generalized order statistics (DGOS) is introduced to enable a common approach to descendingly ordered rvs. In this article, the limit dfs are obtained for the extremal ratio and product with random indices under non random normalization based on GOS and DGOS. Moreover, this article considers the conditions under which the cases of random and non random indices give the same asymptotic results. Some illustrative examples are obtained, which lend further support to our theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.