Abstract

In the framework of the gravitys rainbow, the asymptotic quasinormal modes of the modified Schwarzschild black holes undergoing a scalar perturbation are investigated. By using the monodromy method, we analytically calculated the asymptotic quasinormal frequencies, which depend on not only the mass parameter of the black hole, but also the particle's energy of the perturbation field. Meanwhile, the real parts of the asymptotic quasinormal modes can be expressed as TH ln 3, which is consistent with Hod's conjecture. In addition, for the quantum corrected black hole, the area spacing is independent of the particle's energy, even though the area itself depends on the particle's energy. And that, by relating the area spectrum to loop quantum gravity, the Barbero–Immirzi parameter is given and it remains the same as from the usual black hole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.