Abstract

While Hod’s conjecture is demonstrably restrictive, the link he observed between black hole (BH) area quantisation and the large overtone (n) limit of quasinormal frequencies (QNFs) motivated intense scrutiny of the regime, from which an improved understanding of asymptotic quasinormal frequencies (aQNFs) emerged. A further outcome was the development of the ‘monodromy technique’, which exploits an anti-Stokes line analysis to extract physical solutions from the complex plane. Here, we use the monodromy technique to validate extant aQNF expressions for perturbations of integer spin, and provide new results for the aQNFs of half-integer spins within higher-dimensional Schwarzschild, Reissner–Nordström, and Schwarzschild (anti-)de Sitter BH spacetimes. Bar the Schwarzschild anti-de Sitter case, the spin-1/2 aQNFs are purely imaginary; the spin-3/2 aQNFs resemble spin-1/2 aQNFs in Schwarzschild and Schwarzschild de Sitter BHs, but match the gravitational perturbations for most others. Particularly for Schwarzschild, extremal Reissner–Nordström, and several Schwarzschild de Sitter cases, the application of n → ∞ generally fixes and allows for the unbounded growth of in fixed quantities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.