Abstract
Solving the distorted wavefront in wavefront sensorless adaptive optics (WFSL-AO) relies on excellent optimizers. Many local or global optimization algorithms have been applied to WFSL-AO; however, there is still a challenge to balance the effect and speed of correcting aberrations. To overcome this, a novel global optimization algorithm named asymptotic proximal point (APP) method is introduced into WFSL-AO in this Letter. We compare this algorithm with the various existing optimization algorithms in convergence speed and correction capability by performing numerical simulations. The results show that the APP method beats all competitors with a better correction effect and faster speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.