Abstract

We consider the fully adaptive space–time discretization of a class of nonlinear heat equations by Rothe’s method. Space discretization is based on adaptive polynomial collocation which relies on equidistribution of the defect of the numerical solution, and the time propagation is realized by an adaptive backward Euler scheme. From the known scaling laws, we infer theoretically the optimal grids implying error equidistribution, and verify that our adaptive procedure closely approaches these optimal grids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.