Abstract
We study the asymptotic performance of approximate maximum likelihood estimators for state space models obtained via sequential Monte Carlo methods. The state space of the latent Markov chain and the parameter space are assumed to be compact. The approximate estimates are computed by, firstly, running possibly dependent particle filters on a fixed grid in the parameter space, yielding a pointwise approximation of the log-likelihood function. Secondly, extensions of this approximation to the whole parameter space are formed by means of piecewise constant functions or B-spline interpolation, and approximate maximum likelihood estimates are obtained through maximization of the resulting functions. In this setting we formulate criteria for how to increase the number of particles and the resolution of the grid in order to produce estimates that are consistent and asymptotically normal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.