Abstract

In this paper, we consider a class of nonlinear autoregressive (AR) processes with state-dependent switching, which are two-component Markov processes. The state-dependent switching model is a nontrivial generalization of Markovian switching formulation and it includes the Markovian switching as a special case. We prove the Feller and strong Feller continuity by means of introducing auxiliary processes and making use of the Radon–Nikodym derivatives. Then, we investigate the geometric ergodicity by the Foster–Lyapunov inequality. Moreover, we establish the V -uniform ergodicity by means of introducing additional auxiliary processes and by virtue of constructing certain order-preserving couplings of the original as well as the auxiliary processes. In addition, illustrative examples are provided for demonstration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.