Abstract

We study the convergence of Monte Carlo estimators of derivatives when the transition density of the underlying state variables is unknown. Three types of estimators are compared. These are respectively based on Malliavin derivatives, on the covariation with the driving Wiener process, and on finite difference approximations of the derivative. We analyze two different estimators based on Malliavin derivatives. The first one, the Malliavin path estimator, extends the path derivative estimator of Broadie and Glasserman (1996) to general diffusion models. The second, the Malliavin weight estimator, proposed by Fournié et al. (1999), is based on an integration by parts argument and generalizes the likelihood ratio derivative estimator. It is shown that for discontinuous payoff functions, only the estimators based on Malliavin derivatives attain the optimal convergence rate for Monte Carlo schemes. Estimators based on the covariation or on finite difference approximations are found to converge at slower rates. Their asymptotic distributions are shown to depend on additional second-order biases even for smooth payoff functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.