Abstract

In this study, three asymptotic behaviors of hierarchical clustering are defined and studied with strict conditions under several asymptotic settings, from large samples to high dimensionality, when having two independent populations. We proceed with the current comprehension of the asymptotic properties of hierarchical clustering in high-dimensional, low-sample-size (HDLSS) settings. For high-dimensional data, the asymptotic properties of hierarchical clustering are demonstrated under mild and practical settings, and we present simulation studies and hierarchical clustering performance discussions. Furthermore, hierarchical clustering was theoretically investigated when both the dimension and sample size approach infinity, and we generalized a latent number of populations considering hierarchical clustering in multiclass HDLSS settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.