Abstract
We study a general risk measure called the generalized shortfall risk measure, which was first introduced in Mao and Cai (2018). It is proposed under the rank-dependent expected utility framework, or equivalently induced from the cumulative prospect theory. This risk measure can be flexibly designed to capture the decision maker's behavior toward risks and wealth when measuring risk. In this paper, we derive the first- and second-order asymptotic expansions for the generalized shortfall risk measure. Our asymptotic results can be viewed as unifying theory for, among others, distortion risk measures and utility-based shortfall risk measures. They also provide a blueprint for the estimation of these measures at extreme levels, and we illustrate this principle by constructing and studying a quantile-based estimator in a special case. The accuracy of the asymptotic expansions and of the estimator is assessed on several numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.