Abstract

Summary This paper studies the asymptotic properties of standard panel data estimators in a simple panel regression model with random error component disturbances. Both the regressor and the remainder disturbance term are assumed to be autoregressive and possibly non-stationary. Asymptotic distributions are derived for the standard panel data estimators including ordinary least squares (OLS), fixed effects (FE), first-difference (FD) and generalized least squares (GLS) estimators when both T and n are large. We show that all the estimators have asymptotic normal distributions and have different convergence rates dependent on the non-stationarity of the regressors and the remainder disturbances. We show using Monte Carlo experiments that the loss in efficiency of the OLS, FE and FD estimators relative to true GLS can be substantial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.