Abstract

In this chapter, we consider a problem of statistical estimation of an unknown drift parameter for a stochastic differential equation driven by fractional Brownian motion. Two estimators based on discrete observations of solution to the stochastic differential equations are constructed. It is proved that the estimators converge almost surely to the parameter value, as the observation interval expands and the distance between observations vanishes. A bound for the rate of convergence is given and numerical simulations are presented. As an auxilliary result of independent interest we establish global estimates for fractional derivative of fractional Brownian motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call