Abstract
AbstractWe consider several aspects of the relationship between a [0, 1]‐valued random variable X and the random sequence of digits given by its m‐ary expansion. We present results for three cases: (a) independent and identically distributed digit sequences; (b) random variables X with smooth densities; (c) stationary digit sequences. In the case of i.i.d. an integral limit thorem is proved which applies for example to relative frequencies, yielding asymptotic moment identities. We deal with occurrence probabilities of digit groups in the case that X has an analytic Lebesgue density. In the case of stationary digits we determine the distribution of X in terms of their transition functions. We study an associated [0, 1]‐valued Markov chain, in particular its ergodicity, and give conditions for the existence of stationary digit sequences with prespecified transition functions. It is shown that all probability measures induced on [0, 1] by such sequences are purely singular except for the uniform distribution. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.