Abstract

V. M. Tikhomirov expressed Kolmogorov widths of the class Wr := W∞r[−1, 1] in the space C := C[−1, 1] as a norm of special splines: dN(Wr, C) = ‖xN − r, r‖C, N ≥ r; these splines were named Chebyshev splines. The function xn,r is a perfect spline of order r with n knots. We study the asymptotic behavior of Chebyshev splines for r→∞and fixed n. We calculate the asymptotics of knots and the C-norm of xn,r and prove that xn,r/xn,r(1) = Tn+r+o(1). As a corollary, we obtain that dn+r(Wr, C)/dr(Wr, C) ~ Anr−n/2 as r→∞.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.