Abstract
This paper studies large sample properties of a Bayesian approach to inference about slope parameters γ in linear regression models with a structural break. In contrast to the conventional approach to inference about γ that does not take into account the uncertainty of the unknown break date, the Bayesian approach that we consider incorporates such uncertainty. Our main theoretical contribution is a Bernstein–von Mises type theorem (Bayesian asymptotic normality) for γ under a wide class of priors, which essentially indicates an asymptotic equivalence between the conventional frequentist and Bayesian inference. Consequently, a frequentist researcher could look at credible intervals of γ to check robustness with respect to the uncertainty of the break date. Simulation studies show that the conventional confidence intervals of γ tend to undercover in finite samples whereas the credible intervals offer more reasonable coverages in general. As the sample size increases, the two methods coincide, as predicted from our theoretical conclusion. Using data from Paye and Timmermann (2006) on stock return prediction, we illustrate that the traditional confidence intervals on γ might underrepresent the true sampling uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.