Abstract
This paper studies the asymptotic properties of the penalized least squares estimator using an adaptive group Lasso penalty for the reduced rank regression. The group Lasso penalty is defined in the way that the regression coefficients corresponding to each predictor are treated as one group. It is shown that under certain regularity conditions, the estimator can achieve the minimax optimal rate of convergence. Moreover, the variable selection consistency can also be achieved, that is, the relevant predictors can be identified with probability approaching one. In the asymptotic theory, the number of response variables, the number of predictors and the rank number are allowed to grow to infinity with the sample size. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.