Abstract

<p style='text-indent:20px;'>In this paper, we consider a reaction-diffusion SIS epidemic model with saturated incidence rate in advective heterogeneous environments. The existence of the endemic equilibrium (EE) is established when the basic reproduction number is greater than one. We further investigate the effects of diffusion, advection and saturation on asymptotic profiles of the endemic equilibrium. The individuals concentrate at the downstream end when the advection rate tends to infinity. As the the diffusion rate of the susceptible individuals tends to zero, a certain portion of the susceptible population concentrates at the downstream end, and the remaining portion of the susceptible population distributes in the habitat in a non-homogeneous way; on the other hand, the density of infected population is positive on the entire habitat. The density of the infected vanishes on the habitat for small diffusion rate of infected individuals or the large saturation. The results may provide some implications on disease control and prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.