Abstract

The asymptotic probability density of nonlinear phase noise, often called the Gordon-Mollenauer effect, is derived analytically when the number of fiber spans is large. Nonlinear phase noise is the summation of infinitely many independently distributed noncentral chi2 random variables with two degrees of freedom. The mean and the standard deviation of those random variables are both proportional to the square of the reciprocal of all odd natural numbers. Nonlinear phase noise can also be accurately modeled as the summation of a noncentral chi2 random variable with two degrees of freedom and a Gaussian random variable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.