Abstract

In this paper we will present and analyze a new class of the IMEX finite volume schemes for the Euler equations with a gravity source term. We will in particular concentrate on a singular limit of weakly compressible flows when the Mach number M≪1. In order to efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing the acoustic and gravity waves and a non-stiff nonlinear part that models nonlinear advection effects. For time discretization we use a special class of the so-called globally stiffly accurate IMEX schemes and approximate the stiff linear operator implicitly and the non-stiff nonlinear operator explicitly. For spatial discretization the finite volume approximation is used with the central and Rusanov/Lax–Friedrichs numerical fluxes for the linear and nonlinear subsystem, respectively. In the case of a constant background potential temperature we prove theoretically that the method is asymptotically consistent and asymptotically stable uniformly with respect to small Mach number. We also analyze experimentally convergence rates in the singular limit when the Mach number tends to zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.