Abstract
AbstractWe devise a new class of asymptotic‐preserving Godunov‐type numerical schemes for hyperbolic systems with stiff and nonstiff relaxation source terms governed by a relaxation time ε. As an alternative to classical operator‐splitting techniques, the objectives of these schemes are twofold: first, to give accurate numerical solutions for large, small, and in‐between values of ε and second, to make optional the choice of the numerical scheme in the asymptotic regime ε tends to zero. The latter property may be of particular interest to make easier and more efficient the coupling at a fixed spatial interface of two models involving very different values of ε. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.