Abstract

The Join-the-Shortest-Queue (JSQ) load-balancing scheme is known to minimise the average delay of jobs in homogeneous systems consisting of identical servers. However, it performs poorly in heterogeneous systems where servers have different processing rates. Finding a delay optimal scheme remains an open problem for heterogeneous systems. In this paper, we consider a speed-aware version of the JSQ scheme for heterogeneous systems and show that it achieves delay optimality in the fluid limit. One of the key issues in establishing this optimality result for heterogeneous systems is to show that the sequence of steady-state distributions indexed by the system size is tight in an appropriately defined space. The usual technique for showing tightness by coupling with a suitably defined dominant system does not work for heterogeneous systems. To prove tightness, we devise a new technique that uses the drift of exponential Lyapunov functions. Using the non-negativity of the drift, we show that the stationary queue length distribution has an exponentially decaying tail — a fact we use to prove tightness. Another technical difficulty arises due to the complexity of the underlying state-space and the separation of two time-scales in the fluid limit. Due to these factors, the fluid-limit turns out to be a function of the invariant distribution of a multi-dimensional Markov chain which is hard to characterise. By using some properties of this invariant distribution and using the monotonicity of the system, we show that the fluid limit is has a unique and globally attractive fixed point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.