Abstract
The problem of quickest change detection (QCD) under transient dynamics is studied, in which the change from the initial distribution to the final persistent distribution does not happen instantaneously, but after a series of cascading transient phases. It is assumed that the durations of the transient phases are deterministic but unknown. The goal is to detect the change as quickly as possible subject to a constraint on the average run length to false alarm. The dynamic CuSum (D-CuSum) algorithm is investigated, which is based on reformulating the QCD problem into a dynamic composite hypothesis testing problem, and has a recursion that facilitates implementation. We show that this algorithm is adaptive to the unknown change point, as well as the unknown transient duration. And under mild conditions of the pre-change and post-change distributions, its asymptotic optimality is demonstrated for all possible asymptotic regimes as the transient duration and the average run length to false alarm go to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.