Abstract
We consider a classical joint pricing and inventory control problem with lead times, which has been extensively studied in the literature but is notoriously difficult to solve due to the complex structure of the optimal policy. In this work, rather than analyzing the optimal policy, we propose a class of constant-order dynamic pricing policies, which are fundamentally different from base-stock list price policies, the primary emphasis in the existing literature. Under such a policy, a constant-order amount of new inventory is ordered every period and a pricing decision is made based on the inventory level. The policy is independent of the lead time. We prove that the best constant-order dynamic pricing policy is asymptotically optimal as the lead time grows large, which is exactly the setting in which the problem becomes computationally intractable due to the curse of dimensionality. As our main methodological contributions, we establish the convergence to a long-run average random yield inventory model with zero lead time and ordering capacities by its discounted counterpart as the discount factor goes to one, non-trivially extending the previous results in Federgruen and Yang (2014) that analyze a similar model but without capacity constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.