Abstract

Multivariate tree-indexed Markov processes are discussed with applications. A Galton–Watson super-critical branching process is used to model the random tree-indexed process. Martingale estimating functions are used as a basic framework to discuss asymptotic properties and optimality of estimators and tests. The limit distributions of the estimators turn out to be mixtures of normals rather than normal. Also, the non-null limit distributions of standard test statistics such as Wald, Rao’s score, and likelihood ratio statistics are shown to have mixtures of non-central chi-square distributions. The models discussed in this paper belong to the local asymptotic mixed normal family. Consequently, non-standard limit results are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.