Abstract

Multivariate processes with long-range dependence properties can be encountered in many fields of application. Two fundamental characteristics in such frameworks are long-range dependence parameters and correlations between component time series. We consider multivariate long-range dependent linear processes, not necessarily Gaussian. We show that the covariances between the wavelet coefficients in this setting are asymptotically Gaussian. We also study the asymptotic distributions of the estimators of the long-range dependence parameter and the long-run covariance by a wavelet-based Whittle procedure. We prove the asymptotic normality of the estimators, and we provide an explicit expression for the asymptotic covariances. An empirical illustration of this result is proposed on a real dataset of rat brain connectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.