Abstract
Dispersion indexes with respect to the Poisson and binomial distributions are widely used to assess the conformity of the underlying distribution from an observed sample of the count with one or the other of these theoretical distributions. Recently, the exponential variation index has been proposed as an extension to nonnegative continuous data. This paper aims to gather to study the unified definition of these indexes with respect to the relative variability of a nonnegative natural exponential family of distributions through its variance function. We establish the strong consistency of the plug-in estimators of the indexes as well as their asymptotic normalities. Since the exact distributions of the estimators are not available in closed form, we consider the test of hypothesis relying on these estimators as test statistics with their asymptotic distributions. Simulation studies globally suggest good behaviours of these tests of hypothesis procedures. Applicable examples are analysed, including the lesser-known references such as negative binomial and inverse Gaussian, and improving the very usual case of the Poisson dispersion index. Concluding remarks are made with suggestions of possible extensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.