Abstract
We continue in this paper to study one of the models of a discrete analog of the Renyi problem, also known as the parking problem. Suppose that n and i are integers satisfying n ≥ 0 and 0 ≤ i ≤ n – 1. We place an open interval (i, i + 1) in the segment [0, n] with i being a random variable taking values 0, 1, 2, …, n – 1 with equal probability for all n ≥ 2. If n < 2, then we say that the interval does not fit. After placing the first interval, two free segments [0, i] and [i + 1, n] are formed and independently filled with intervals of unit length according to the same rule, and so on. At the end of the process of filling the segment [0, n] with intervals of unit length, the distance between any two adjacent unit intervals does not exceed one. Suppose now that Xn is the number of unit intervals placed. In our earlier work published in 2018, we studied the asymptotic behavior of the first moments of random variable Xn. In contrast to the classical case, the exact expressions for the expectation, variance, and third central moment were obtained. The asymptotic behavior of all central moments of random variable Xn is investigated in this paper and the asymptotic normality for Xn is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.