Abstract

This paper investigates longtime dynamical behaviors of an axially accelerating viscoelastic string with geometric nonlinearity. Application of Newton's second law leads to a nonlinear partial-differential equation governing transverse motion of the string. The Galerkin method is applied to truncate the partial-differential equation into a set of ordinary differential equations. By use of the Poincare maps, the dynamical behaviors are presented based on the numerical solutions of the ordinary differential equations. The bifurcation diagrams are presented for varying one of the following parameter: the mean transport speed, the amplitude and the frequency of transport speed fluctuation, the string stiffness or the string dynamic viscosity, while other parameters are fixed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.