Abstract

First we put together basic definitions and fundamental facts and results from the theory of (un)marked point processes defined on Euclidean spaces \({\mathbb{R}}^{d}\). We introduce the notion random marked point process together with the concept of Palm distributions in a rigorous way followed by the definitions of factorial moment and cumulant measures and characteristics related with them. In the second part we define a variety of estimators of second-order characteristics and other so-called summary statistics of stationary point processes based on observations on a “convex averaging sequence” of windows \(\{W_{n},\,n \in \mathbb{N}\}\). Although all these (mostly edge-corrected) estimators make sense for fixed bounded windows our main issue is to study their behaviour when W n grows unboundedly as n → ∞. The first problem of large-domain statistics is to find conditions ensuring strong or at least mean-square consistency as n → ∞ under ergodicity or other mild mixing conditions put on the underlying point process. The third part contains weak convergence results obtained by exhausting strong mixing conditions or even m-dependence of spatial random fields generated by Poisson-based point processes. To illustrate the usefulness of asymptotic methods we give two Kolmogorov–Smirnov-type tests based on K-functions to check complete spatial randomness of a given point pattern in \({\mathbb{R}}^{d}\).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call