Abstract

AbstractWe consider kinetic and associated macroscopic equations on networks. A general approach to derive coupling conditions for the macroscopic equations from coupling conditions of the underlying kinetic problem is presented using an asymptotic analysis near the nodes of the network. This analysis leads to the consideration of a fixpoint problem involving the coupled solutions of kinetic half-space problems. The procedure is explained for two simplified situations. The linear case is discussed for a linear kinetic BGK-type model leading in the macroscopic limit to a linear hyperbolic problem. The nonlinear situation is investigated for a kinetic relaxation model and an associated macroscopic scalar nonlinear hyperbolic conservation law on a network. Numerical comparisons between the solutions of the macroscopic equation with different coupling conditions and the kinetic solution are presented for the case of tripod and more complicated networks.KeywordsKinetic and hyperbolic equationsNetworksZero relaxation coupling conditionsHalf-space problems

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.