Abstract

The asymptotic Lyapunov stability with probability one of a Duffing system with time-delayed feedback control under bounded noise parametric excitation is studied. First, the time-delayed feedback control force is expressed approximately in terms of the system state variables without time delay. Then, the averaged Ito stochastic differential equations for the system are derived by using the stochastic averaging method and the expression for the Lyapunov exponent of the linearized averaged Ito equations is derived. It is inferred that the Lyapunov exponent so obtained is the first approximation of the largest Lyapunov exponent of the original system, and the asymptotic Lyapunov stability with probability one of the original system can be determined approximately by using the Lyapunov exponent. Finally, the effects of time delay in feedback control on the Lyapunov exponent and the stability of the system are analyzed. The theoretical results are well verified through digital simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.