Abstract

It is shown that the uniform radius of spatial analyticity [Formula: see text] of solutions at time [Formula: see text] to the KdV equation cannot decay faster than [Formula: see text] as [Formula: see text] given initial data that is analytic with fixed radius [Formula: see text]. This improves a recent result of Selberg and da Silva, where they proved a decay rate of [Formula: see text] for arbitrarily small positive [Formula: see text]. The main ingredients in the proof are almost conservation law for the solution to the KdV equation in space of analytic functions and space-time dyadic bilinear [Formula: see text] estimates associated with the KdV equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.