Abstract

In this paper, we study the asymptotic behavior of the volume of spheres in metric measure spaces. We first introduce a general setting adapted to the study of asymptotic isoperimetry in a general class of metric measure spaces. Let $\mathcal{A}$ be a family of subsets of a metric measure space $(X,d,\mu)$, with finite, unbounded volume. For $t>0$, we define $$ I^{\downarrow}_{\mathcal{A}}(t)=\inf_{A\in \mathcal{A},\, \mu(A)\geq t} \mu(\partial A). $$ We say that $\mathcal{A}$ is asymptotically isoperimetric if $\forall\; t>0$ $$ I_{\mathcal{A}}^{\downarrow}(t)\leq CI(Ct), $$ where $I$ is the profile of $X$. We show that there exist graphs with uniform polynomial growth whose balls are not asymptotically isoperimetric and we discuss the stability of related properties under quasi-isometries. Finally, we study the asymptotically isoperimetric properties of connected subsets in a metric measure space. In particular, we build graphs with uniform polynomial growth whose connected subsets are not asymptotically isoperimetric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.