Abstract
For a linear normal system of ordinary differential equations with rapidly oscillating coefficients in a critical case, the existence of a unique periodic solution is proved, its complete asymptotic expansion is constructed and justified, and Lyapunov stability and instability conditions are found. The asymptotic series constructed is shown to converge absolutely and uniformly to the solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational Mathematics and Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.